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Abstract-Effective stiffness theory of the Nth order is derived for the modeling of the three-dimensional
time-dependent motion of a fiber-reinforced composite. The fibers are assumed to be of a rectangular cross
section and are imbedded in the matrix in the form of a doubly periodic array. The resulting theory
represents the composite as a higher order homogeneous continuum with microstructure whose motion is
governed by higher order displacements. The derivation is systematic and can be applied to elastic as well
as anelastic composites to the desired degree of accuracy.

INTRODUCTION

The effective stiffness theory was developed to model laminated composites and fiber-rein­
forced composites as higher order continua with microstructure, see the monograph by
Achenbach[l] and references cited there. A great advantage of this theory is its ability to
permit the application of a general type of loading to a three-dimensional configuration and no
symmetry conditions need to be assumed, thus allowing an arbitrary three-dimensional motion
of the composite.

In [I] several first order effective stiffness theories are discussed, and a second order
effective stiffness theory for elastic laminated materials is reviewed in [2]. A generalization to
Nth order theory for the modeling of anelastic and elastic-viscoplastic laminated composites
appears in [3] where the governing equations are derived directly from the basic field equations
without invoking a variational principle.

Effective stiffness theory for fiber-reinforced composites is much more difficult to derive due
to the different geometries involved in their structure. A representative cell in the material
(assuming a periodic arrangement of the fibers within the matrix) contains a circle representing
the fiber cross section and a rectangle or a hexagon for the surrounding matrix. Accordingly, a
systematic development of a higher order effective stiffness theory is complicated and in a
second order theory it is necessary to assume in advance different displacement distributions in
different circumstances, see [I]. Hlavacek presented in [4] a second order theory, but it involves
several simplifying assumptions. For example, the continuity of the stresses across the
interface between the phases is not guaranteed, and that a linear expression for the displace­
ment distribution within the fibrous material would be sufficient. In both Refs. [1,4] the
equations of motion are derived from a Lagrangian function upon which the Hamilton's
variational principle is applied, so that generalizations to anelastic or inelastic composites would
be very difficult.

It is possible, however, to represen~ the circular fibers in the composite by fibers of
rectangular cross sections so that a representative cell contains this time the same geometry for
the fiber and the surrounding matrix. The replacement is possible since the dispersion curves
for bars of circular and square cross sections turn out to be nearly the same if their cross
sectional areas are approximately the same [5]. Motivated by this observation, Bartholomew
and Torvik[6] developed a first order effective stiffness theory for filamentary composite
materials. Their derivation is based on the construction of strain and kinetic energy densities
and subsequent use of Hamilton's principle.

In this paper a generalized effective stiffness theory of the N -th order is proposed for the
modeling of a composite material made of a matrix reinforced by a doubly periodic array of
rectangular fibers. The equations of motions in this theory are derived directly from the basic
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field equations of the constituents so that the theory is essentially applicable to elastic as well as
anelastic fiber-reinforced composites. The formulation of the boundary conditions for applied
tractions is given in the framework of the derived theory. The derivation of the higher order
continuum theory is systematic and can be carried out to the desired degree of accuracy.

The theory is illustrated by computing the acoustical dispersion curve for longitudinal
harmonic waves propagating in the fibers direction. It is found that excellent agreement exists
between the theoretical and numerical results, based on a finite element solution for a matrix
reinforced by circular fibers, reported in [7] as well as experimental results. This agreement
shows that the modeling of circular fibers by rectangular ones is satisfactory. In the limiting
case of vanishingly small wave number the effective wave speed in the composite, whose value
is known from the effective modulus theory, is obtained. Accordingly, the relevant effective
moduli can be computed directly from the implicit expression provided by the frequency
equation in this limiting special case.

Results are also given for an impacted fiber-reinforced slab on which a uniform time­
dependent load is applied in the fibers direction.

GEOMETRY AND DISPLACEMENT EXPANSIONS

Consider a composite material consisting of a matrix constituent reinforced by unidirectional
fibers of rectangular cross section. It is assumed that the fibers extends along the XI-direction
and arranged in a doubly periodic array in the X2 and X3 directions, see Fig. 1. In this paper we
consider matrix and fibers made of perfectly elastic materials although extensions to anelastic
constituents can be made.

Let dl! hi denote the dimensions of the rectangular cross section of the fibers and d2, h2

represent the spacing of the fibers within the matrix in the X2 and X3 directions respectively. Due
to the assumed periodic arrangement of the fibers, we consider a representative cell shown in
Fig. 2. The cell is divided into four subcells a, ~ = 1,2, and four local systems of coordinates
XI! i~a), i~) are introduced whose origins are located in the center of each subcell. Their
positions are denoted by x~a>, x~).t

The essential step of the effective stiffness theory (EST) is the expansion of the displacement
vector in each subcell in terms of the distances from the center. This expansion can be
expressed in terms of the Legendre polynomials permitting the modeling of increasing complex
deformation patterns within the cell. For an Nth order theory the displacement components at

11. 3
Fig. I. A fiber-reinforced composite in which the fibers are arranged in a doubly periodic array.

tHere and in the sequel the subscripts or superscripts a, {3 will indicate that quantities belong 10 one of the subcells.
Repeated a or /3 do not imply summation.
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Fig. 2. A representative cell.

any point within the subcell can be expressed as

i =1,2,3

X.

(1)

where Z~crl =i~crl/(dcr/2), ZtyJl =ityJl/(h/l/2), t is the time, Pm is the Legendre polynomial of order
m and summation is implied by the repeated indices m, n=0, 1, ... , N.

The displacement distribution in the composite material is described by the higher order
displacements Ulr~!n) and these are defined only on discrete lines X2 =X~crl and X3 =XtyJl. The
derivation of the continuum theory requires a smoothing operation by which the discrete nature
of the composite is eliminated. This transition to the homogeneous model is performed by
considering Ulr~!n) as continuous functions of X2 and X3, and whose values at X2 = X~crl and
X3 =X~fJl coincide with the values of the actual values at the centerlines of the subcell. This
transition to the continuous field is indicated by writing Uli';!:!nl(x" X2, X3, t) instead of
Ulr~!n)(X" X~crl, x'fl, t), with similar replacements for the other field variables. Consequently,
both types of materials are assumed to exist simultaneously at every point of the continuum
model.

The components of the small strain tensor are given by

i, j = 1,2,3 (2)

where differentiation in the X2 and X3 directions should be with respect to the local coordinates
i~a) and i'f' respectively.

INTERFACE CONTINUITY CONITIONS

At the interfaces of the subcells the displacements and normal and shear stresses must be
continuous, i.e.

(3)

(4)

(5)

(6)
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where (]'\r~) are the stress components in the subcell, and the plus-and-minus signs in (3) and (5)

denote the two different equations obtained depending upon whether the interface follows the
subcells (113) or (213). Similarly the plus-and-minus signs in (4) and (6) denote the two different
situations whether the interface follows (a I) or (0:2).

The resulting eqns (3)-(6) need to insure the continuity of displacements and stresses at the
interfaces between the subcells as well as between the neighboring cells. In the exact solution
of harmonic wave propagation problem in a periodically layered body, Delph et aI. [II] showed
that the dependent variables are, in general, not periodic but have a quasi-periodic property.
This follows 'from Bloch's theorem and the periodicity of the medium. Consequently, although
the continuity of displacements and stresses can be satisfied across the layers interface of the
subcell, the continuity across the interface between neighboring cells can be insured by using
the quasi-periodic relationships. Utilizing these relations, the continuity conditions in the
problem treated in [1 I] can be imposed in terms of displacement and stresses of the unit cell. In
the present problem of a doubly periodic structure, eqns (3)-(6) insure the continuity of
displacements and stresses across the subcell interfaces, but do not, in general, suffice for
continuity between neighboring cells. This lack of continuity must be regarded as a part of the
approximation involved in the model.

Using (1), the displacement continuity conditions (3)-(4) can be rewritten as

u\l~~ nl(XI> x~1) + dd2, xlfJ, t)Pm(+ I)Pn(zlf» = Ulf~~ n)(XI, X~2):t d2/2, xjf3), t)pm(:t 1)Pn(zj~J).
(7)

Rather than requiring (7)-(8) to be satisfied at every point along the interfaces, we impose the
condition that the average displacement is continuous at the interfaces. This is achieved by
integrating both sides of (7) and (8) with respect to ilf) along -1 :5 zlf):5 1 and i~a) along
-1 :5 Z~al:5 1 respectively. This gives

U(lf3) ( (1) - d /2 (ll) t)P (-1) - U(2~) ( (2) + d /2 (f3) t)P (+ 1)j(m.O) XI> X2 + I , X), m + - Hm.O) XI, X2 - 2 ,X3, m - , (9)

(10)

In the framework of the higher order homogeneous model it will be necessary to apply
(9)-(10) simultaneously throughout the medium, since it is assumed that both types of materials
and interfaces exist at every point. By performing this transition, the continuum continuity
equations which correspond to (9)-(10) are obtained by expanding the resulting continuous
functions about XI> X2. X3, t in terms of da/2 and ha/2 up to the Nth power:

(1 I)

(12)

In (11)-(12) the summations on I, m, n are from 0 to N, and Uli~!") = U\i~!")(XI' X2, X3, I).
The transition from the discrete to the homogeneous model replaces the stress continuity of

stresses (5)-(6) by

(13)

(14)

Equations (11)-(12) are 24 conditions for the continuity of the displacements and (13)-(14) are
24 conditions for the continuity of the stresses.
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EQUATIONS OF MOTION

The equations of motion for the homogeneous tontinuvm which models the composite
material are derived directly from the corresponding dynamic equations in the subcell regions.
This derivation does not rely, therefore, on the construction of a Lagrangian function (where
the continuity relations are included through the use of Lagrangian multipliers) on which
Hamilton's principle is applied. Accordingly, it is possible to apply the proposed approach to
anelastic fiber reinforced materials without invoking any variational principle.

The stress equations of motion in the subcell (a[3), in the absence of body forces, are given
by

(15)

where Pap is the mass density of the material in the subcell, dots represents differentiation with
respect to time and differentiation in the 2 and 3 directions should be with respect to (x~a» and
(x'fl) respectively.

In a periodically layered medium the stress resultants and the moments of the stresses over
the thicknesses were used in [1] in conjunction with the balance equations of linear momentum
to derive a first order EST. This was extended in [3] for the derivation of a generalized EST. In·
the present problem of a fiber-reinforced composite the N-th order EST the equations of motion
are obtained by multiplying (15) by (i~al)p(x'fl)q, (p, q = 0,1, ... , N), and integrating both sides
with respect to i~al and x'fl. This yield after integrations by parts and using (1) the following set
of equations

aIS\i~~ ql + I~ir;, q) + J~ir;'q) - pS~irJ-I. ql - qS~ir;'q-1)

=Pap(daI2)P(hP/2)qOl't~~n)6c.::l6~qll[(2m + 1)(2n + 1)]

j = 1,2,3 m, n, p, q = 0,1•... , N p, q are not summed. (16)

In (16):

J

d.,l2 Jh,J2
S!!'IJ) =_1- u!alJ)(i{a»p(illJ»q di~a) di{lJ)

'Hp. q I A I) 2 ~ • ~,alJ -d.,l2 -h,J2 .
(17)

(18)

(19)

and 6~Pl represent the coefficients in the expansion of zP in terms of the Legendre polynomials,
i.e.

s = 0,1, ... , P (20)

with 6lfl =0 for s > p. Several values of 6lfl can be found in ([8], p. 798).
In (18)-(19) u~ilJl(±daI2) and U~ilJl(±hP/2) stand for the interfacial stresses

U~jPl(Xit x~al = ±daI2, x'f), t) and u~ilJl(Xit i~a), x'f) = ±hp/2, t)

respectively.
If the higher order stresses Sln~!q) in (16) are expressed in terms of the higher order

displacement gradients using the constitutive relations of the material, the dynamic eqns (16)
for the Nth order EST form a system of 12(N + 1)2 equations in 12(N + 1)2 unknown U~'t~~n)

and 48 unknown interfacial stresses. By incorporating the 48 continuity conditions (11)-(14) for
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(22)

the displacements and stresses, it should be possible for a given order N to solve these
equations subjected to the specific initial and boundary conditions.

BOUNDARY CONITIONS

The governing equations of motion of the homogeneous medium can be solved for a dynamic
problem provided the relevant boundary conditions are formulated in the framework of the
developed higher order continuum theory. This formulation which is given in the present
section is similar to the procedure used in [9] for generating the boundary conditions for a
second order EST for a laminated composite. It is based on Taylor expansions of the stresses
and the applied loading functions about the center of every subcell of the representative cell.

To this end suppose that the tractions are prescribed on a plane whose normal is Mj • We
introduce in each subcell a local coordinate system (xJ, x~al, x~Il») aligned parallel to the global
system (x" X2, X3), with its origin located on the exterior plane at the center of the subcell. With
the same origin we also define a local orthogonal system (ii, 5, ii) with ii in the direction normal
to the plane, see Fig. 3.

The stress boundary conditions are given by

a-lrll)(xl, x~al, xlfl, t)I,;~oMj =a-lrlll(O, 5, ii, t)Mj =T\all )(5, ii, t) i, j =1,2,3 (21)

where Tlall )(5, ii, t) describe the distribution of the time-dependent traction components acting
on the exterior plane.

Expanding J-ljll) and Tlall ) in terms of 5, b, up to the Nth power gives an equation which
involve J-lrll) and T\a ll )and their derivatives with respect to 5 and ii all evaluated at the origin
ii =5= ii =O. Equating like powers of 5, ii yields a set of boundary conditions at that point.

If, on the other hand, the expansion (1) is substituted in the stress-strain relations, it is
possible to express alrll) and its derivatives evaluated at the origin XI =x~a) =Xlfl =0 in terms
of the higher order displacement gradients. These expressions can be used in the above set of
boundary conditions provided relations of the form

a aXI a ax~a) a axlfl a
as = as ail + as aWl +--as- ai~ll)

are employed.

~,.
Xz

Fig. 3. Boundary coordinate systems for the exterior plane.
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In conclusion, stress boundary conditions prescribed on the surface of a plane can be
incorporated in the derived theory in the form of a set of relationships between the higher
order displacement gradients and the time-dependent functions which describe the applied
loadings. This formulation involves, however, the same restrictions mentioned in [9].

APPLICATION

We choose to apply the derived EST for fiber reinforced composites to obtain the dispersion
curves for longitudinal time-harmonic waves propagating in the direction of the fibers and to
compute the dynamic response of a fiber reinforced slab which is impacted on one of its surfaces
uniformly in a direction parallel to the fibers. In both situations the composite material is modeled
by a second order EST (N = 2). Accordingly, from symmetry considerations it can be seen that in
both cases eqn (1) can be written in the form

UCalJ )=W CalJ ) + ~(3iCa)l_ d 2/4)WCalJ) +1(3illJ}2_ h2/4)WlalJ)I ICO.O). 2 a 112.0) 2 3 IJI 1l0.2)

(23)

where

W laS) - UCaS)
ICO.O) - 1l0.0)

W~(C,)I) = U~~C.)I)/(h,J2)

(24)

The above expressions for the displacements reftect the necessary properties that u\alJ) is even
in i~a) and il/); u~alJ) is even in il/) and odd in i~a); and that u~alJ) is even in i~a) and odd in il/).

The strain components are computed from (23) according to (2) giving

f CalJ ) = ~ WCaS) +1(3x-~a}2-d2/4)~ w(alJ) +1(3x-CIl)l-h2/4)o WCalJ)
11 Q I 1l0.0) 2. a Q I 1l2, 0) 2 3 IJI I 1C0.2),

f lalJ) = WlalJ ) fCall) = WCaS)
22 20.0), 33 3(0. I),

f~1/l) =O. (25)

Using the Hooke's law for perfectly elastic materials, the stress components in the subcell
(al3) can be determined from

(26)

where 3./ is the Kronecker delta, AaIJ and #J.a/l are the Lame' constants of the material in the
subcell. The stress components can be readily expressed in terms of the higher order
displacement and displacement gradients using (25). These expressions can be used to evaluate
SS Vol. 17. No. I4-F
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the higher order stresses as follows:

J. ABOUD!

S(a/l) d~[s(a/l) + d~a w(a/l) ]
11(2.0) = 12 11(0.0) 10 1 1(2.0),

Stall) - !!j[s(a/l) +!!ja w(aB) ]
11(0, 2) - 12 11(0,0) 10 I 1(0,2),

Stall) - d~[w(a/l) + a w(aB) 13]
12(1,0) - JLa/l"4 1(2,0) 1 2<1.0) ,

(27)

where Ea/l = Aa/l + 2JLa/l'
The displacement continuity conditions (11)-( 12) yield in the present situation the 8 relations

wlle,)o) +(drt4) W\l~,)o) = Wwe.)O) +(d~/4) WI7~.)oh I
dl W~lr,)o) = -d2 W~7r,)O)'

(28)

h W (al) - h w(a2)
1 3(0. I) - - 2 3(0. I),

The dynamic equations of motion are obtained from (16) yielding in the present case 20

equations of the form

a S(a/l) + [(a/l) + j(a/l) - W.. (aB)
1 11(0.0) 21(0.0) 31(0,0) - Pall 1(0.01

a S(a/l) + [(all) + j(a/l) s(a/l) - d~W" (aB)
I 12(1,0) 22(1.0) 32(1,0) - 22(0.0) - Pa/l12 2(1.0)

a S(a/l) + [(all) + j(a/l) stall) - !!jw" (a/l)
1 13(0, I) 23<0.1) 33(0.1) - 33(0,0) - Pa/l12 3(0, I)

aStall) +d~l(all) +j(a/l) 2s(a/l) - d~[W" (aB) +d~W" (aB) ]
1 11(2.0) "4 2110,0) 31(2,0)- 21(1,0) - Pa/l12 1(0,0) 10 H2.0) ,

a S(a/l) +1(a/l) +!!jj(a/l) 2s(a/l) - !!j[W"(aB) +!!1W" (aB) ]
11110,2) 2J(0.2) 431(0,0)- 31(0,1)-Pa/l12 1(0.0) 10 I(O.2}·

(29)

(30)

(31)

(32)

(33)

Due to the existing symmetry in the present problem, u\i/l) should be even in .i~a) and odd in
ilf) so that to the order of expansion used in the second order theory u~iBI must be independent
of i~a). Accordingly J\iri.OI = d;J\irJ.01/12. Similarly, u~i/l) is independent of ilf) so that
HirJ,2) = hM~irJ.0)/12. Finally, u~~/l) = u\'2/l) must be odd in both i~a) and ilf) so that H1J.1) =

J (a/l) -0
32(1.0) - •
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From the continuity conditions of the stresses (13)-(14) we have
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n12) - n22) J~12) - J~II)HO,O) - - HO,O), 1(0.0) - - 1(0,0),

n21 ) - nil) J~21} - J~22)ICO, 0) - - 1(0,0), 1(0,0) - - 1(0,0),

H12) - H22) J~12) - nl}
2(1,0) - 2(1,0), 1(0,1)- 3(0,1),

n21} - H") J~21) - J~22) (34)2(1,0) - 2(1,0)0 3(0, I) - 3(0,1},

Consequently in the system of 20 equations given in (29)-(33) there are 20 unknown higher
order displacements and 8 unknown interfacial stresses Imt,o), n~b,oJo nllb.oJo n~b,o" H~Ro),
I~toJo J~~t.l), and J~~~t.l). By incorporating the 8 displacement continuity relations given by
(28) we can solve the above system subject to initial and boundary conditions.

For the problem of an impacted slab occupying the region 0s XIS H; -00 < X2, X3 < 00 and
subjected to an extended uniform time-dependent tractions on the plane XI =0 (which is
perpendicular to the fibers) while the other surface is kept rigidly clamped, the boundary
conditions (21) simplify to

(35)

with T2(1) =T3(t) =O.
Expanding the I.h.s. of (35) in power series about the center of the subcell up to the second

order and equating equal powers gives

a A (afJ)I-0
ai~a)ulj 0 - ,

a2
A (011)1 _0

ai~a)2Ulj 0 - ,

a
2

A Call) 1 - 0
-LfJ)2 Ulj -.

aX) 0
(36)

From (36) we obtain the following non-trivial conditions imposed at XI = 0

Eqns (37) form a system of 20 boundary conditions for the 20 higher order displacements at
XI=O,

On the rigidly clamped surface XI =H we have

WCaS) - w(ar,) - WCall ) - W Call ) - w(a8) - 0
1(0,0) - 2( ,.0) - 3(0,1) - IC2,O) - 1(0,2) - • (38)

RESULTS

Results are given for a fiber reinforced composite of circular silica fibers (1) and poly­
styrene matrix (2) whose mechanical and geometrical parameters are given in Table 1. This table
is taken from Ref. [7] where the finite element method was employed to compute the dispersion
curves of the composite material and compared with some experimental.data. The length ratio
is computed from the relation df = hf = 1Ta2 so that d./d = h./d =a1T 1/2/d.

(1) Dispersion curve for the lowest longitudinal mode
In order to investigate the dispersion of longitudinal harmonic waves propagating in an

infinite medium in the direction of the fibers, we substitute for the 28 dependent variables in
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Table I. Mechanical and geometric properties of the fiber reinforced com·
posite: silica(l}-polystyrene (2)

AI = 1.607 X 10" dyne/cm1

IL I = 3.12 X 10" dyne/em1

PI = 2.2 gm/em'

A, =0.317 X 10" dyne/cm1

IL, =0.1323 X 10" dyne/em1

Pl = 1.056 gm/cm'

fiber radius = a = 0.051 em
fiber spacing =d =d,+d, =hi +h, =0.236 em.

(29)-(33) travelling waves of the form A, exp[ik(x1- ct)] where A, (r = I, ... ,28) are amplitude
factors, k is the wave number, c is the phase velocity and i is the imaginary unit. This gives a
system of 28 homogeneous equations for Ar so that for a non-trivial solution the determinant of
the matrix of coefficients must vanish, yielding the frequency equation

det[A] = O. (39)

The elements of the matrix A are given in the Appendix.
In Fig. 3 the lowest (acoustical) dispersion curve computed from (39) is shown and compared

with the finite element' and experimental results presented in [7]. For this comparison the
dimensionless phase velocity c/(cr)" where (cr)1 = (}J..Ipt)1/2, is plotted vs /cd. It is well seen that
excellent agreement is obtained over the shown range of frequencies when using a second order
EST. For the smaller wave lengths it is possible to increase the accuracy further by adopting a
higher order EST.

For vanishingly small wave number the phase velocity has the value c =O.96(CT)1. For this
limiting case this value can be obtained from the effective modulus theory in which the fiber
reinforced composite is modeled by a homogeneous but transversely isotropic elastic material.
Here the stress-strain relation for a longitudinal one-dimension motion (uniaxial strain) in the
direction of the fibers (i.e. the direction of the axis of symmetry) can be written in the form

(40)

where

(41)

In (41) the effective moduli Et k*, v~ can be expressed in terms of the elastic constants of the
matrix and fibers and their volume concentrations. They are given by ([10], p. 131).

(42)

where Y j , Vj are the Young's moduli and Poisson's ratios of the materials, Vi are their volume
fractions and kj =}J.;/(l- 2v;), i =1,2. Accordingly, the effective longitudinal wave speed can be
computed from c* = [cTdp*]1/2 with p* = VIPI +V2P2 being the effective density. For the
composite material described in Table I we obtain c* =O.96(cr)1 which is the same value
obtained before. Consequently, eqn (39) can be regarded as an implicit expression for the
effective modulus in terms of the mechanical and geometrical properties of the constituents,
since its lowest root for a vanishingly small wave number gives the value of this modulus.
Obviously, the other effective moduli can be determined essentially by the same procedure. It
should be noticed, however, that it might be possible to compute the elective moduli of a fiber
reinforced composite by employing a lower order EST than the second used here.

(2) Transient wave propagation
For the problem of an impacted slab which is initially at rest, the equations of motion

(29)-(33), the continuity conditions (28) and (34) together with the boundary conditions (37)-(38)
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Fig. 4. Theoretical (-----), numerical (--) and experimental (0.000) phase velocities for longitudinal
waves propagating in the direction of the fibers.

determine completely the motion. The applied input on the surface XI = 0 is described by TJU)
in (37) which is chosen here in the form

(43)

where tm is an appropriate constant.
The one-dimensional equations of motion were solved by a finite difference procedure and

.·',IJ-I _._._.-

•• ',/3.Z1.· Z,/3.' - - - - - ---­
•• z,/3. Z-----

4

2

o

/.
I \.

i \.. \./\
"'0./ .

/ \
i \
! \I .. \

I \
j \

/ \! ,.",
I .
{ \. !
. \ II .

; \j'"
. "...,

o

-
2 4

Fig. 5. For the loading function (43) with (cr)".,Jd =0.5 and slab width H =d. the stresses O'l~·) are shown
at XI = H/2. x\al = xV" = 0 versus time.
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results for the time dependent stresses U\'j!ll(XIl x~a) =0, x'fl =0, t) are shown in Fig. 4 at the
mid-point x I = H/2 vs the non-dimensional time (CT)I tld. The computations were performed
with (CT) I tmld =0.5 and H =d. It should be noticed that due to the existing symmetry in the
geometry of the problem U\I?l = uWl. The curves in the figure exhibit both the direct and
reflected waves and it can be noticed that the propagated stress levels can exceed by several
times the stress applied on the boundary especially in the stiff material.
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Appendix

The nonzero elements of the matrix t in (39) are given by:

AC I, 1) .. P1 ~ + E
1

~ , 1.(1,2) • 1.(1,3) • - A
1

k ,

1.( 1.21) • c1 ' 1.(1.22) • c2 •

1.( Z. 1) • -),1 k, 1.(2.2) • c
3

~ + c4 '11 - E1
• 1.(2,3) .. - A

1
•

1.( 2, 4) • c5 k • 1.(2.25) • 0.5

1.( 3. 1) • - A
1

k • 1.(3.2) • - A
1 • 1.(3.3) • c6 ~ + c7 ~ - E1 '

1.( 3. 5) .. Cs k • 1.(3.26) .. 0.5

1.( 4. 1)· c
3

~ + c
9

'11 , 1.(4,2) • (c
ll

- C
10

)k 1.(4,3)· - c
10

k ,

1.( 4, 4)· c12 ~ + c13 'll - c14 ' 1.(4,21) • cIS' 1.(4.22) • c16 •

1.( 5, 1) • c
6

~ + c17 ~ 1.(5.2)· - c1S k ,

1.( 5, 3)· (c19 - c1S)k , 1.(5,5) • c20 ~ + c21 ~ - c 22 '

1.( 5.21)· c23 .' 1.(5,22) • c24 '

1.( 6, 6) • P2 ~ + E2 1) • 1.(6.7) '" A(6.S) '" - A2 k ,

1.( 6,23)· -c
1

, 1.(6.22) • - c25 '

1.( 7, 6) • -),2 k • 1.(7.7) .. c26 ~ + c27 'll - E2 ' A(7,S) .. - ~2 '

1.( 7, 9)· c2S k • A{7.27) • O.S ,

1.( S. 6)· -),2 k , A(S. 7) .. - A2 ' A(S ,8) • c29 ~ + ~O '11 - EZ '

1.( S.10)· c31 k • A(S,26) .. 0.5 •

1.( 9, 6)· c
26

~ + c
32

'll • 1.(9,7) • (c33 - (34)k • 1.(9.S) • -~4 k ,

1.( 9, 9) • c
6S

~ + c69 ~ - c70 • 1.(9,22) • - c35 ' 1.(9.23) .. - CIS'
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A(lO, 6)· c29 ~ + ~6 1l , A(10,7) •• ~7 k ,

A(lO, 8)· (~8· <::31)k , A(lO,lO) • c39 ~ + c40 '11 • c41 '

A(10,22). - cS2 ' A(lO,23) • - c42 '

A(ii,il) • A(6,6) , A(11,12) • A(6,7) , A(11,13) • A(11,12) ,

A(11,21)· - c43 ' A(11,24) •• c2 '

A(12,ll) • A(ll,12) , A(12,12) • c44 ~ + c4S '11 - 12 '

A(12,13)· - A2 ' A(12,14) • c46 k , A(12,2S) • 0.5 ,

A(13,ll) • A(11,12) , A(13,lZ) •• AZ '

A(13,13)· c47 t + c48 1l • 12 ' A(13,lS) • c49 k , A(13,Z5) • 0.5 •

A(14,ll). c44 t + cso 1l • A(14.1Z) • (cS1 • c
5Z

)k ,

A(14,13)· • cS2 k • A(14,14) • c
53

t + c
S4

T\ • css '

A(14.Z1). -cS6 ' A(14,Z4) •• cS7 '

A(lS,ll). c47 t + cS8 '1\ , A(lS,12) •• c
S9

k •

A(lS,13). (c60 - CSg) k , A(lS.lS) • c61 t + c
6Z

1l • c
63

'

A(lS Zl). -c64 , A(lS.Z4) •• c
24

•

A(16.16) • A(6.6) • A(16,17) • A(16,18) • A(6,7) •

A(16,23)· c43 ' A(16.24) • czs •
A(17,16) • A(16,17) • A(17,l?) • A(lZ,lZ) • A(17,18) • - A

Z
'

A(17,19) • AC12,14) , AC17,27) .0.5 ,

AC18,16) • AC16,l7) , AC18,17) • - A2 ' A(18,18) • AC8,8) ,

AC18,ZO)· AC8,lO) , A(18,28) .0.5 ,

AC19,16) • AC14,l1) • AC19.17) • A(14.1Z) , AC19,18) • A(14,13) ,

A(19.i9) • A(14.i4) , AC19,23) • c56 • A(19,24) • c
65

'

A(20,16) • A(10,6) , AC20,17) • AC10,7) , A(20,18) • AC10,8) ,

A(20,20) • A(lO,lO) , A(20,23) • c66 ' A(20,24) • c
67

'

A(21, 1)· 1, A(Zl.4) • d~/4 AC21,ll) •• 1 A(21,14) •• d~/4

A(Z2, 6) • 1, ACZ2,9) • ~/4 A(22,16)·. 1 , AC22,19) •• d~/4
2 2A(23, 1) • 1, AC23,5) • hi /4 , A(23,6) •• 1 , A(23,lO) • - h

2
/4 •

A(24,ll). 1, A(24,15) • hi/4 , A(24,16) • - 1 , A(24,20) • - hi/4

AC25, 2). d1 ' A(25,12) • d2 '

A(26, 3) • ht A(26,8)· h2 '

A(27, 7). ~ , A(27,17) • d
2

A(28,13) • hi ' A(28,18) • h2
222

where t· k c and T\. - k •

In these equations:
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